Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 4): 127068, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37758105

ABSTRACT

The aim of this study was to develop a lightweight epoxy based biocomposite for morphing wing and unmanned aerial vehicle (UAV) applications. The proposed composite was developed using a 3D printed high stiffness lignin-Acrylonitrile Butadiene Styrene (ABS) core and industrial hemp with aluminized glass fiber epoxy skin. The ABS was reinforced using lignin macromolecule derived from cashew nut shells via twin screw extruder and the core was printed using an industrial grade 3D printer. Furthermore, the composites were prepared by compression moulding with an ABS-lignin core and hemp/aluminized GF surface and characterized according to respective American society of testing and materials (ASTM) standards. The findings indicate that the addition of 30 vol% Al-glass and hemp fiber with lignin strengthened ABS core improved the mechanical properties. The composite material designated as "E2" exhibits the maximum mechanical properties, providing tensile strength, flexural strength, Izod impact, interlaminar shear strength (ILSS), and compression values of, 136 MPa, 168 MPa, 4.82 kJ/m2, 21 MPa, and 155 MPa respectively. The maximal energy absorbed by composite designation "E2," during drop load impact test is 20.6 J. Similarly, the composite designation "E2"gives fatigue life cycles of 33,709, 25,781 and 19,633 for 50 %, 70 % and 90 % of ultimate tensile strength (UTS) and 32.5 (K1c) MPa⋅m and 0.76 (G1c) MJ/m2 in fracture toughness and energy release rate respectively.


Subject(s)
Acrylonitrile , Anacardium , Cannabis , Animals , Butadienes , Lignin , Nuts , Unmanned Aerial Devices , Epoxy Resins , Printing, Three-Dimensional , Styrenes
2.
J Hazard Mater ; 333: 215-221, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28359037

ABSTRACT

The laminar burning velocity of CO2/N2 diluted stoichiometric dimethyl ether (DME) air mixtures is determined experimentally at atmospheric pressure and elevated mixture temperatures using a mesoscale high aspect-ratio diverging channel with inlet dimensions of 25mm×2mm. In this method, planar flames at different initial temperatures (Tu) were stabilized inside the channel using an external electric heater. The magnitude of burning velocities was acquired by measuring the flame position and initial temperature. The mass conservation of the mixture entering the inlet and the stationary planar flame front is applied to obtain the laminar burning velocity. Laminar burning velocity at different initial mixture temperatures is plotted with temperature ratio (Tu/Tu,o), where a reference temperature (Tu,o) of 300K is used. Enhancement in the laminar burning velocity is observed with mixture temperature for DME-air mixtures with CO2 and N2 dilutions. A significant decrease in the burning velocity and slight increase in temperature exponent of the stoichiometric DME-air mixture was observed with dilution at same temperatures. The addition of CO2 has profound influence when compared to N2 addition on both burning velocity and temperature exponent.

SELECTION OF CITATIONS
SEARCH DETAIL
...